EQUAÇÃO GERAL DE GRACELI.
G ψ = E ψ = Eψ ω Mom= [/ ] / / = ħω [Ϡ ] [ξ ] [,ς] ψ μ / h/c ψ(x, t) x [ t ]..
Fórmula de Rydberg para o hidrogênio
Onde
- é o comprimento de onda da luz emitida no vácuo,[1]
- é a constante de Rydberg para o hidrogênio,[4]
- and são inteiros tais que .
Em física quântica, a regra de ouro de Fermi expressa a taxa de transição (probabilidade por unidade de tempo) de um auto-estado de um Hamiltoniano para um contínuo de estados, devido a uma perturbação , que pode depender do tempo. Seu nome é uma homenagem ao físico italiano Enrico Fermi.
Dado um auto-estado do Hamiltoniano não perturbado , a probabilidade de transição para um estado é dado em primeira ordem de teoria de perturbação por
sendo a densidade de estados finais.
A densidade de estados pode ser calculada para elétrons, fótons, ou fónons em sistemas MQ. É usualmente notado com um dos símbolos g, , n, ou N. É uma função g(E) da energia interna E, na qual a expressão g(E) dE representa o número de estado com energias entre E e E+dE.
Para converter entre energia e vetor de onda, a relação específica entre E e k deve ser conhecida. Por exemplo, a fórmula para elétrons é
E para fótons, a fórmula é
Pode também ser escrito como uma função da frequência angular , a qual é proporcional à energia. A densidade de estados é usada extensivamente em física da matéria condensada, onde pode referir-se ao nível de energia dos elétrons, fótons ou fônons em um sólido cristalino. Em sólidos cristalinos, há frequentemente níveis de energia onde a densidade dos estados dos elétrons é zero, o que significa que os elétrons não podem ser excitados a estas energias. A densidade dos estados também ocorre na regra dourada de Fermi, a qual descreve quão rápido as transições mecânico quânticas ocorrem na presença de uma perturbação.
Num sistema tridimensional, a densidade de estados em espaço recíproco (espaço k) é
onde V é o volume e n o número de pontos de ramificação que existem para um único valor de k. Estes pontos de ramificação são por exemplo o spin-acima e spin-abaixo estados para elétrons, as polarizações de fótons, e os modos longitudinais ou transversais para fônons.
Processo de Wiener como um limite do passeio aleatório
Considere variáveis aleatórias independentes e identicamente distribuídas com média e variância . Para cada , defina um processo estocástico de tempo contínuo
Esta é uma função passo aleatório. Incrementos de são independentes porque são independentes. Para grande, é próximo de pelo teorema central do limite. Conforme , se aproximará de um processo de Wiener. A prova desta afirmação é oferecida pelo teorema de Donsker. Esta formulação explicou por que o movimento browniano é ubíquo.[6]
A Lei de Planck para radiação de corpo negro exprime a radiância espectral em função do comprimento de onda e da temperatura do corpo negro.
A tabela seguinte descreve as variáveis e unidades utilizadas:
/Variável Descrição Unidade radiância espectral J•s−1•m−2•sr−1•Hz−1 frequência hertz temperatura do corpo negro kelvin constante de Planck joule / hertz velocidade da luz no vácuo metros / segundo número de Euler sem dimensão constante de Boltzmann joule / kelvin G ψ = E ψ = Eψ ω Mom= [/ ] / / = ħω [Ϡ ] [ξ ] [,ς] ψ μ / h/c ψ(x, t) x t ].. [
O comprimento de onda está relacionado a frequência como (supondo propagação de uma onda no vácuo):
Pode-se escrever a Lei de Planck em termos de energia espectral:
A energia espectral também pode ser expressa como função do comprimento de onda:
Max Planck produziu esta lei em 1900 e a publicou em 1901, na tentativa de melhorar a expressão proposta por Wilhelm Wien que adequou dados experimentais para comprimentos de onda curtos desviados para comprimentos de onda maiores. Ele estabeleceu que a Lei de Planck adequava-se para todos os comprimentos de onda extraordinariamente bem. Ao deduzir esta lei, ele considerou a possibilidade da distribuição de energia eletromagnética sobre os diferentes modos de oscilação de carga na matéria. A Lei de Planck nasceu quando ele assumiu que a energia destas oscilações foi limitada para múltiplos inteiros da energia fundamental E, proporcional à freqüência de oscilação [1]:
. / G ψ = E ψ = Eψ ω Mom= [/ ] / / = ħω [Ϡ ] [ξ ] [,ς] ψ μ / h/c ψ(x, t) x t ].. [
Planck acreditava que a quantização aplicava-se apenas a pequenas oscilações em paredes com cavidades (que hoje conhecemos como átomos), e não assumindo as propriedades de propagação da Luz em pacotes discretos de energia. Além disto, Planck não atribuiu nenhum significado físico a esta suposição, mas não acreditava que fosse apenas um resultado matemático que possibilitou uma expressão para o espectro emitido pelo corpo negro a partir de dados experimentais dos comprimentos de onda. Com isto Planck pôde resolver o problema da catástrofe do ultravioleta encontrada por Rayleigh e Jeans que fazia a radiância espectral tender ao infinito quando o comprimento de onda aproximava-se de zero, o que experimentalmente não é observado. É importante observar também que para a região do visível a fórmula de Planck pode ser aplicada pela aproximação de Wien e da mesma forma para temperaturas maiores e maiores comprimentos de onda podemos ter também a aproximação dada por
Comentários
Postar um comentário