EQUAÇÃO GERAL DE GRACELI.

G ψ = E ψ = Eψ ω Mom  [/ ] /  /   = ħω [Ϡ ]  [ξ ] [,ς]   ψ μ / h/c ψ(xt)  [x  t ]..



Fórmula de Rydberg para o hidrogênio

/
G ψ = E ψ = Eψ ω Mom  [/ ] /  /   = ħω [Ϡ ]  [ξ ] [,ς]   ψ μ / h/c ψ(xt [x  t ]..

Onde

 é o comprimento de onda da luz emitida no vácuo,[1]
 é a constante de Rydberg para o hidrogênio,[4]
 and  são inteiros tais que .




Em física quântica, a regra de ouro de Fermi expressa a taxa de transição (probabilidade por unidade de tempo) de um auto-estado de um Hamiltoniano  para um contínuo de estados, devido a uma perturbação , que pode depender do tempo. Seu nome é uma homenagem ao físico italiano Enrico Fermi.

Dado um auto-estado  do Hamiltoniano não perturbado , a probabilidade de transição para um estado  é dado em primeira ordem de teoria de perturbação por

sendo  a densidade de estados finais.





A densidade de estados pode ser calculada para elétronsfótons, ou fónons em sistemas MQ. É usualmente notado com um dos símbolos gn, ou N. É uma função g(E) da energia interna E, na qual a expressão g(E) dE representa o número de estado com energias entre E e E+dE.

Para converter entre energia e vetor de onda, a relação específica entre E e k deve ser conhecida. Por exemplo, a fórmula para elétrons é

 / 
G ψ = E ψ = Eψ ω Mom  [/ ] /  /   = ħω [Ϡ ]  [ξ ] [,ς]   ψ μ / h/c ψ(xt [x  t ]..

E para fótons, a fórmula é

 / 
G ψ = E ψ = Eψ ω Mom  [/ ] /  /   = ħω [Ϡ ]  [ξ ] [,ς]   ψ μ / h/c ψ(xt [x  t ]..

Pode também ser escrito como uma função da frequência angular , a qual é proporcional à energia. A densidade de estados é usada extensivamente em física da matéria condensada, onde pode referir-se ao nível de energia dos elétronsfótons ou fônons em um sólido cristalino. Em sólidos cristalinos, há frequentemente níveis de energia onde a densidade dos estados dos elétrons é zero, o que significa que os elétrons não podem ser excitados a estas energias. A densidade dos estados também ocorre na regra dourada de Fermi, a qual descreve quão rápido as transições mecânico quânticas ocorrem na presença de uma perturbação.

Num sistema tridimensional, a densidade de estados em espaço recíproco (espaço k) é

 / 
G ψ = E ψ = Eψ ω Mom  [/ ] /  /   = ħω [Ϡ ]  [ξ ] [,ς]   ψ μ / h/c ψ(xt [x  t ]..

onde V é o volume e n o número de pontos de ramificação que existem para um único valor de k. Estes pontos de ramificação são por exemplo o spin-acima e spin-abaixo estados para elétrons, as polarizações de fótons, e os modos longitudinais ou transversais para fônons.




Processo de Wiener como um limite do passeio aleatório

Considere  variáveis aleatórias independentes e identicamente distribuídas com média  e variância . Para cada , defina um processo estocástico de tempo contínuo

 / 
G ψ = E ψ = Eψ ω Mom  [/ ] /  /   = ħω [Ϡ ]  [ξ ] [,ς]   ψ μ / h/c ψ(xt [x  t ]..

Esta é uma função passo aleatório. Incrementos de  são independentes porque  são independentes. Para  grande, é próximo de  pelo teorema central do limite. Conforme  se aproximará de um processo de Wiener. A prova desta afirmação é oferecida pelo teorema de Donsker. Esta formulação explicou por que o movimento browniano é ubíquo.[6]




Lei de Planck para radiação de corpo negro exprime a radiância espectral em função do comprimento de onda e da temperatura do corpo negro.

 / 
G ψ = E ψ = Eψ ω Mom  [/ ] /  /   = ħω [Ϡ ]  [ξ ] [,ς]   ψ μ / h/c ψ(xt [x  t ]..

A tabela seguinte descreve as variáveis e unidades utilizadas:

VariávelDescriçãoUnidade
radiância espectralJ•s−1•m−2•sr−1•Hz−1
frequênciahertz
temperatura do corpo negrokelvin
constante de Planckjoule / hertz
velocidade da luz no vácuometros / segundo
número de Eulersem dimensão
constante de Boltzmannjoule / kelvin
/
G ψ = E ψ = Eψ ω Mom  [/ ] /  /   = ħω [Ϡ ]  [ξ ] [,ς]   ψ μ / h/c ψ(xt [x  t ]..

O comprimento de onda está relacionado a frequência como (supondo propagação de uma onda no vácuo):

 / 
G ψ = E ψ = Eψ ω Mom  [/ ] /  /   = ħω [Ϡ ]  [ξ ] [,ς]   ψ μ / h/c ψ(xt [x  t ]..

Pode-se escrever a Lei de Planck em termos de energia espectral:

 / 
G ψ = E ψ = Eψ ω Mom  [/ ] /  /   = ħω [Ϡ ]  [ξ ] [,ς]   ψ μ / h/c ψ(xt [x  t ]..

A energia espectral também pode ser expressa como função do comprimento de onda:

 / 
G ψ = E ψ = Eψ ω Mom  [/ ] /  /   = ħω [Ϡ ]  [ξ ] [,ς]   ψ μ / h/c ψ(xt [x  t ]..

Max Planck produziu esta lei em 1900 e a publicou em 1901, na tentativa de melhorar a expressão proposta por Wilhelm Wien que adequou dados experimentais para comprimentos de onda curtos desviados para comprimentos de onda maiores. Ele estabeleceu que a Lei de Planck adequava-se para todos os comprimentos de onda extraordinariamente bem. Ao deduzir esta lei, ele considerou a possibilidade da distribuição de energia eletromagnética sobre os diferentes modos de oscilação de carga na matéria. A Lei de Planck nasceu quando ele assumiu que a energia destas oscilações foi limitada para múltiplos inteiros da energia fundamental E, proporcional à freqüência de oscilação  [1]:

 . / G ψ = E ψ = Eψ ω Mom  [/ ] /  /   = ħω [Ϡ ]  [ξ ] [,ς]   ψ μ / h/c ψ(xt [x  t ]..

Planck acreditava que a quantização aplicava-se apenas a pequenas oscilações em paredes com cavidades (que hoje conhecemos como átomos), e não assumindo as propriedades de propagação da Luz em pacotes discretos de energia. Além disto, Planck não atribuiu nenhum significado físico a esta suposição, mas não acreditava que fosse apenas um resultado matemático que possibilitou uma expressão para o espectro emitido pelo corpo negro a partir de dados experimentais dos comprimentos de onda. Com isto Planck pôde resolver o problema da catástrofe do ultravioleta encontrada por Rayleigh e Jeans que fazia a radiância espectral tender ao infinito quando o comprimento de onda aproximava-se de zero, o que experimentalmente não é observado. É importante observar também que para a região do visível a fórmula de Planck pode ser aplicada pela aproximação de Wien e da mesma forma para temperaturas maiores e maiores comprimentos de onda podemos ter também a aproximação dada por





Comentários

Postagens mais visitadas deste blog