EQUAÇÃO GERAL DE GRACELI.
G ψ = E ψ = Eψ ω Mom= [/ ] / / = ħω [Ϡ ] [ξ ] [,ς] ψ μ / h/c ψ(x, t) x [ t ]..
Em física, a lei de Rayleigh-Jeans, primeiramente proposta no início do século XX, com o objetivo de descrever a radiação espectral da radiação eletromagnética de todos os comprimentos de onda desde um corpo negro a uma temperatura dada. Expressa a densidade de energia de um radiação de corpo negro de comprimento de onda λ como[1]
também sendo escrita na forma
onde λ está em metros, c é a velocidade da luz, T é a temperatura em Kelvins, e k é a constante de Boltzmann.
A lei é derivada de argumentos da física clássica. Lord Rayleigh obteve pela primeira vez o quarto grau da dependência do comprimento de onda em 1900; uma derivação mais completa, a qual incluia uma constante de proporcionalidade, foi apresentada por Rayleigh e Sir James Jeans em 1905. Esta agregava umas medidas experimentais para comprimentos de onda. Entretanto, esta predizia uma produção de energia que tendia ao infinito já que o comprimento de onda se fazia cada vez menor. Esta idéia não se sustentava pelos experimentos e a falta se conheceu como a "catástrofe ultravioleta"; entretanto, não foi, como as vezes se afirma nos livros-texto de física, uma motivação para a teoria quântica.
A lei concorda com medições experimentais para grandes comprimentos de onda mas discorda para comprimentos de onda pequenos.
Em 1900 Max Planck revisou a lei, obtendo uma lei um tanto diferente, a qual estabeleceu:
que pode ser escrita também na forma
onde h é a constante de Planck e c é a velocidade da luz. Esta é a Lei de Planck expressa em termos de comprimento de onda λ = c /ν. A lei de Planck não sofre de uma "catástrofe ultravioleta", e assim de acordo com os dados experimentais, mas seu pleno significado só se apreciaria vários anos mais tarde. No limite de temperaturas muito altas ou grandes comprimentos de onda, no termo exponencial se converte no pequeno, pelo que o denominador se converte em aproximadamente hc / kT λ série de potências de expansão. Isto lhe dá o nome de Lei de Rayleigh-Jeans.
A fórmula
Primeira tentativa de calcular a densidade de energia dentro da caixa, derivada do teorema da equipartição termodinâmica, usando a lei de distribuição de modo normal obtida do eletromagnetismo clássico multiplicada pela energia média dos modos vibracionais:[2]
As duas teorias utilizadas, eletromagnetismo e termodinâmica estatística, foram amplamente testadas e amplamente aceitas na física da época. Jeans mais tarde fez uma pequena correção relacionada ao fator 8, que foi causado por um erro no cálculo de Rayleigh do número de estados.
A lei de distribuição resultante passou a ser chamada de distribuição Rayleigh-Jeans.
Embora a distribuição obtida utilize uma teoria bem testada e completamente confiável, seus resultados são corretos apenas na faixa de baixas frequências.
Para o limite oposto, a distribuição Rayleigh-Jeans apresenta resultados completamente inconsistentes, produzindo densidade de energia e, portanto, emissividade espectral divergente com frequência crescente.
O número de modos de vibração eletromagnética no interior de uma caixa quadrada com dimensões iguais a , no intervalo de frequências entre e e , é dado por .
/ G ψ = E ψ = Eψ ω Mom= [/ ] / / = ħω [Ϡ ] [ξ ] [,ς] ψ μ / h/c ψ(x, t) x [ t ]..
Nesta equação, deve-se notar que a existência de volume é expressa como o cubo da caixa tamanho l.
O número de estados eletromagnéticos depende dessa quantidade, embora a densidade de estados, formalmente o número de estados dividido pelo volume, não seja.
A energia média de cada modo vibracional eletromagnético é dada pelo teorema da equipartição, que é o resultado da seguinte integração, assumindo equilíbrio térmico e um contínuo de valores possíveis para a energia:
/ G ψ = E ψ = Eψ ω Mom= [/ ] / / = ħω [Ϡ ] [ξ ] [,ς] ψ μ / h/c ψ(x, t) x [ t ]..
A equação apresenta bom comportamento, reproduzindo qualitativa e quantitativamente os resultados experimentais na região de baixa frequência. No entanto, na região de alta frequência, a equação produz resultados absurdos, sugerindo uma contradição teórica, pois nessa região a densidade de energia é assintoticamente infinita.
O resultado, conhecido como catástrofe do ultravioleta, sugere que uma das teorias usadas para desenvolver a equação, é conhecida como eletromagnetismo ou teorema da equipartição.[necessário esclarecer]
Descrição clássica
Como exemplo mais simples de um corpo radiante, tem-se o oscilador harmônico linear de frequência própria .[3]
Para este oscilador, pode-se determinar a energia radiada por segundo; sendo esta radiação equivalente à radiação emitida por um dipolo oscilante a qual é dada pela equação:
/ G ψ = E ψ = Eψ ω Mom= [/ ] / / = ħω [Ϡ ] [ξ ] [,ς] ψ μ / h/c ψ(x, t) x [ t ]..
onde é a energia média dos osciladores. Pela lei de equipartição de energia, é possível chegar a este valor de energia, dado na equação:
/ G ψ = E ψ = Eψ ω Mom= [/ ] / / = ħω [Ϡ ] [ξ ] [,ς] ψ μ / h/c ψ(x, t) x [ t ]..
onde é a constante de Boltzmann e é a temperatura. Substituindo o valor de na equação de , obtém-se:
/ G ψ = E ψ = Eψ ω Mom= [/ ] / / = ħω [Ϡ ] [ξ ] [,ς] ψ μ / h/c ψ(x, t) x [ t ]..
Entretanto, por essa lei, o aumento da frequência implica em aumento da energia radiante até que lim ν → ∞ ⇒ μν → ∞. Esta incoerência ficou conhecida como catástrofe do ultravioleta.
A Lei de Planck para radiação de corpo negro exprime a radiância espectral em função do comprimento de onda e da temperatura do corpo negro.
- / G ψ = E ψ = Eψ ω Mom= [/ ] / / = ħω [Ϡ ] [ξ ] [,ς] ψ μ / h/c ψ(x, t) x t ].. [
A Lei de Stefan-Boltzmann (mais conhecida como Lei de Stefan) estabelece que a energia total radiada por unidade de área superficial de um corpo negro na unidade de tempo (radiação do corpo negro), (ou a densidade de fluxo energético (fluxo radiante) ou potencia emissora), j* é diretamente proporcional à quarta potência da sua temperatura termodinâmica T:
A constante de proporcionalidade (não é uma constante fundamental) é chamada constante de Stefan-Boltzmann ou constante de Stefan σ. A lei foi descoberta de jeito experimental por Jožef Stefan (1835-1893) no ano 1879 e derivada de jeito teórico no marco da termodinâmica por Ludwig Boltzmann (1844-1906) em 1884. Boltzmann supôs uma máquina térmica ideal com luz como substância de trabalho semelhante a um gás. Esta lei é a única lei da natureza que leva o nome de um físico esloveno. Hoje pode-se derivar a lei da Lei de Planck sobre a radiação de um corpo negro:
e é válida só para objetos de cor negra ideal, os perfeitos radiantes, chamados corpos negros. Stefan publicou esta lei o 20 de março no artigo Über die Beziehung zwischen der Wärmestrahlung und der Temperatur (Das relações entre radiação térmica e temperatura) nos Boletins das sessões da Academia das Ciências de Viena.
Temperatura do Sol
Com esta lei Stefan também determinou a temperatura da superfície solar. Conheceu, a partir dos dados de Charles Soret (1854–1904) que a densidade do fluxo energético solar é 29 vezes maior que a densidade do fluxo energético de uma placa de metal aquecida à temperatura equivalente. Uma placa redonda foi situada a uma distancia do aparelho de medida tal que podia ser vista com mesmo ângulo que o sol. Soret estimou que a temperatura na placa fosse entre 1900 °C e 2000 °C. Stefan supôs que 1/3 do fluxo da energia solar é absorvido pela atmosfera terrestre, com o que conseguiu um valor total para o fluxo energético do Sol os 2/3 do observado; por tanto, 3*29/2 = 43,5 vezes. Medidas mais precisas da absorção atmosférica foram feitas em 1888 e 1904. A temperatura Stefan obtida foi um valor médio entre os anteriores, 1950 °C, e por tanto a temperatura termodinâmica absoluta muito próxima a 2200 K. Como 2.574 = 43.5, segue-se que a temperatura solar é 2.57 vezes maior que a da placa, conseguindo Stefan um valor de 5430 °C ou 5700 K (o valor aceite na atualidade é 5780 K). Este foi o primeiro valor acordado para a temperatura do Sol. Anteriormente foram supostos de 1800 °C até 13,000,000 °C. O primeiro valor de 1800 °C fora determinado por Claude Servais Mathias Pouillet (1790-1868) no 1838 usando a lei de Dulong-Petit. Pouilett aproximou também a metade do valor do fluxo energético solar. É possível que este resultado tenha lembrado a Stefan que a lei de Dulong-Petit podia não ser exata a altas temperaturas: se usarmos uma lente sobre a luz solar, podemos aquecer um sólido a uma temperatura muito maior que 1800 °C.
A Lei de Stefan-Boltzmann é um exemplo de lei potencial.
Histórico e construção
Em 1879, o físico esloveno Jožef Stefan (1835-1893) deduziu, a partir de resultados experimentais, que a potência P (energia irradiada por segundo) de um corpo negro é diretamente proporcional à sua temperatura T elevada à quarta potência e também diretamente proporcional à área A da superfície emissora. Essa relação foi chamada de Lei de Stefan.
/ G ψ = E ψ = Eψ ω Mom= [/ ] / / = ħω [Ϡ ] [ξ ] [,ς] ψ μ / h/c ψ(x, t) x t ].. [
Onde σ = 5,67 x 10−8W/m2K4 é a constante de Stefan.
Mais tarde, em 1884, o físico austríaco Ludwig Boltzmann (1844-1906) deduziu a Lei de Stefan teoricamente, utilizando a Termodinâmica estatística. O modelo utilizado por Boltzmann foi uma máquina térmica que, em vez de usar gás como substância, usava a luz.
Vale aqui um parênteses importantíssimo: em 1871, Boltzmann, baseado nos trabalhos pioneiros de James Maxwell em física estatística, desenvolveu, junto com outros cientistas, a teoria cinética dos gases, a qual relaciona o micro com o macro. Um dos resultados mais impressionantes é a relação entre a temperatura T de um gás (o macro) e o movimento das suas moléculas (o micro), mais especificamente a energia cinética média Ec das moléculas.
Utilizando recursos da Termodinâmica e da estatística e um modelo extremamente simples para os gases, Boltzmann deduziu que:
/ G ψ = E ψ = Eψ ω Mom= [/ ] / / = ħω [Ϡ ] [ξ ] [,ς] ψ μ / h/c ψ(x, t) x t ].. [
KB=1,38 x 10−23J/K é a constante de Boltzmann: o elo entre o microscópico e o macroscópico. Em outras palavras, a média das energias cinéticas de cada uma das moléculas de um gás é 3/2KBT. Veja a ordem de grandeza da constante de Boltzmann: ela é muito, muito pequena, tal como esperado, pois a energia cinética de uma única molécula de um gás deve ser mesmo pequena.
Pelo formato das curvas da intensidade da radiação de corpo negro X comprimento de onda a diferentes temperaturas, nota-se que sua expressão matemática não seria tão simples como a Lei de Stefan e a Lei de Wien.
Em 1893, o mesmo Wilhelm Wien, baseado nos dados experimentais e na sua intuição, ajustou uma expressão matemática aos dados experimentais (hoje um computador faz isso instantaneamente), que ficou conhecida como a Lei da Radiação de Wien:
/
Em 1900, na Inglaterra, Lord Rayleigh (1842 – 1919) derivou teoricamente uma outra expressão matemática, baseando-se nas leis clássicas de Newton e Maxwell e com o auxílio da mecânica estatística de Boltzmann. O modelo teórico de Rayleigh foi o de uma cavidade radiante onde as ondas eletromagnéticas refletem nas paredes formando ondas estacionárias semelhantes às da experiência da corda, só que em 3 dimensões.[2]
Os resultados de Rayleigh foram corrigidos pelo físico James Hopwood Jeans (1877 – 1946), e a expressão final ficou conhecida com Lei da Radiação de Rayleigh-Jeans:
Onde KB é a constante de Boltzmann e c é a velocidade da luz.
Entretanto, a aproximação de Wien só explicava bem a radiação do corpo negro para comprimentos de onda baixos (frequências altas); e, a de Rayleigh, só funcionava bem para comprimentos de onda altos (frequências baixas)[nota 1]. A figura mostra o problema: a curva verde é a curva experimental, ou seja, a realidade dos fatos; a curva vermelha é aquela derivada pela equação de Rayleigh-Jeans: ela só se ajusta bem à curva experimental em frequências baixas. A curva em azul é a curva derivada da equação de Wien: só se ajusta bem à curva verde, experimental, em frequências altas. Ou seja, nenhuma das duas curvas derivadas da teoria explicava a curva experimental. Disso os cientistas não gostam, pois a ciência parte do pressuposto de que existe uma explicação unitária para um mesmo fenômeno.[2]
Em 1895 Max Planck começou a se interessar pelo fenômeno da radiação do corpo negro e suas pesquisas nesse campo durariam 5 anos. Planck desejava construir um modelo teórico que encontrasse as correções necessárias na Lei da Radiação de Wien para entrar em concordância com os dados experimentais em qualquer frequência.
O modelo de Planck baseava-se no que ele chamou de osciladores, ou seja, os geradores das ondas que estariam nas paredes do forno. Era como se bolinhas infinitamente pequenas, atadas a molas idem, estivessem presas na parede interna do corpo negro e a absorção de radiação se desse com as bolinhas passando a vibrar mais, enquanto a radiação se desse com as bolinhas passando a vibrar menos. O desenvolvimento teórico seguiu, chegando a uma expressão final muito interessante, como veremos.
Em outubro de 1900, Planck convidou para um chá em sua casa, Heinrich Rubens (1865 – 1922) que, juntamente com Ferdinand Kurlbaum (1857 – 1927), obtivera dados de alta precisão da radiação do corpo negro, especialmente nas frequências onde a Lei da Radiação de Wien falhava. Horas depois que seu convidado foi embora, Planck intuiu uma expressão que se ajustava perfeitamente aos dados experimentais, a Lei de Planck, da radiação térmica:
Onde
I = radiância espectral / Js−1, m−2 , sr−1 ,Hz−1
ν = frequência / Hertz
T = temperatura do corpo negro / kelvin
h = constante de Planck / joule - hertz
c = velocidade da luz / metros - segundo
e = número de Euler / adimensional
Baseado na Termodinâmica e nos estudos de mecânica estatística de Boltzmann, Planck desenvolveu seu modelo teórico. Boltzmann tinha um trabalho com átomos que era matematicamente semelhante. Nele, as energias dos átomos eram múltiplos inteiros de uma energia mínima ε. Planck fez uma analogia com os osciladores das paredes do forno e obteve, estupefato, o seguinte resultado: para uma determinada frequência ν, a energia dos osciladores somente poderia ser um múltiplo inteiro de hν, onde h = 6,63 x 10−34 j.s j.s é a constante de Planck. A energia não era absorvida ou emitida de modo contínuo, mas apenas em múltiplos de uma unidade mínima, que dependia da frequência da radiação. Ou seja, se estamos trabalhando com apenas uma frequência (ν), toda a energia que o corpo negro pode absorver ou emitir tem que ser múltiplo inteiro de hν. O quantum de energia dos osciladores deveria ser hν. Devido à pequeníssima magnitude da constante de Planck, não notamos isso no nosso dia-a-dia.[2]
Devido à natureza conservadora de Planck era muito difícil pensar que a energia, grandeza fundamental de toda a Física, que todos pensavam que podia ser emitida ou absorvida continuamente, pudesse ser discreta, ou seja, emitida ou absorvida apenas em unidades múltiplas de um certo valor mínimo. Deve ter sido muito difícil para Planck admitir sequer essa possibilidade. Mas, mesmo assim, Planck publicou seu trabalho, e numa das mais magníficas páginas da história da ciência, deu início ao que chamamos hoje de Mecânica Quântica.
Exemplos
Com a Lei de Stefan-Boltzmann, os astrônomos puderam inferir facilmente o raio das estrelas. A lei é também usada na termodinâmica dos buracos negros na chamada radiação de Hawking. De forma semelhante podemos calcular a temperatura da Terra TE:
onde TS é a temperatura do Sol, rS o ráio do Sol e a0 a unidade astronômica e podemos tomar 6 °C, assim, o nosso Sol é aproximadamente 964 vezes mais quente que a Terra. Isto mostra de jeito aproximado que T ~ 300 K é a temperatura do nosso mundo. O a menor mudança da distancia entre o Sol ou das condições atmosféricas poderiam mudar a temperatura media da Terra.
Alguns físicos criticaram Stefan por usar um método inédito para determinar a lei. É certo que foi ajudado por algumas coincidências, mas isto não significa que não fizera a dedução correta.G ψ = E ψ = Eψ ω Mom= [/ ] / / = ħω [Ϡ ] [ξ ] [,ς] ψ μ / h/c ψ(x, t) x t ].. [
Onde: α e β são constantes.
Em mecânica estatística clássica, o teorema da equipartição é uma fórmula geral que relaciona a temperatura de um sistema com a sua energia média. O teorema da equipartição é também conhecido como lei da equipartição, equipartição de energia ou simplesmente equipartição. A ideia central da equipartição é a de que, em equilíbrio térmico, a energia é partilhada de maneira igual entre as suas várias formas. Por exemplo, a energia cinética média no movimento translacional de uma molécula deve ser igual à energia cinética média do seu movimento rotacional.
Da aplicação do teorema da equipartição surgem predições quantitativas. Tal como no teorema do virial, dá as energias cinética e potencial totais do sistema a uma dada temperatura, a partir da qual é possível calcular a capacidade térmica do sistema. No entanto, a equipartição também dá os valores médios dos componentes individuais da energia, tal como a energia cinética de uma partícula específica ou a energia potencial de uma única mola. Por exemplo, prediz que cada molécula num gás perfeito possui uma energia cinética média com um valor de (3/2)kBT, em equilíbrio térmico, onde kB é a constante de Boltzmann e T é a temperatura. De uma maneira mais geral, o teorema pode ser aplicado a qualquer sistema físico clássico em equilíbrio termodinâmico, não importando o seu grau de complexidade. O teorema pode ser utilizado para derivar a lei dos gases ideais e a lei de Dulong-Petit para os calores específicos dos sólidos. Também pode ser utilizado para prever as propriedades das estrelas, até mesmo de anãs brancas e estrelas de neutrões, dado que a sua validade se estende a situações em que efeitos relativistas são considerados.
Apesar de o teorema da equipartição proporcionar predições muito precisas em certas circunstâncias, isto não é assim quando os efeitos quânticos são significativos, nomeadamente quando estão em causa temperaturas suficientemente baixas. A equipartição é válida somente quando a energia térmica kBT é muito maior que o espaçamento entre os níveis de energia quânticos. Quando a energia térmica é menor que o espaçamento entre níveis de energia quânticos, num grau de liberdade específico, a energia média e a capacidade térmica deste grau de liberdade são menores que os valores preditos pela equipartição. Diz-se que tal grau de liberdade está "congelado". Por exemplo, o calor específico de um sólido diminui a baixas temperaturas dado que vários tipos de movimentos se congelam em vez de permanecerem constantes como prevê a equipartição. Estas reduções nos calores específicos foram dos primeiros sinais notados pelos físicos do século XIX no sentido de que a física clássica estaria incorrecta e que era necessário avançar no desenvolvimento de novas teorias físicas. Juntamente com outras evidências, a falha da equipartição no campo da radiação electromagnética — também conhecida como catástrofe ultravioleta — induziu Albert Einstein a sugerir que a luz estava quantizada em fotões, uma hipótese revolucionária que incentivou o desenvolvimento da mecânica quântica e da teoria quântica de campos.
Conceito básico e exemplos simples
A palavra "equipartição" significa "partilha por igual", derivando do latim equi da primeira parte da palavra, æquus ("igual ou plano"), e "partição" da segunda parte da palavra, partitionem ("divisão, parte").[1][2]
O conceito original da equipartição era a de que a energia cinética total de um sistema é compartilhada em partes iguais entre todas as partes independentes, em média, uma vez o sistema houvesse alcançado o equilíbrio térmico. A equipartição também faz predições quantitativas de ditas energias. Por exemplo, prediz que cada átomo de um gás nobre, em equilíbrio térmico à temperatura T, possui uma energia cinética translacional média de (3/2)kBT, onde kB é a constante de Boltzmann. Portanto, para uma mesma temperatura, os átomos mais pesados do xenón terão uma velocidade média menor que a dos átomos de hélio, que são mais leves. A Figura 2 mostra a distribuição de Maxwell-Boltzmann para as velocidades dos átomos nos quatro gases nobres.
É importante destacar neste exemplo, que a energia cinética depende de forma quadrática em relação à velocidade. O teorema da equipartição mostra que, em equilíbrio térmico, todo o grau de liberdade (como por exemplo, uma componente da posição ou velocidade de una partícula) que possui somente uma dependência quadrática na energia possui uma energia média de ½kBT e portanto contribui ½kB para a capacidade térmica do sistema. Isto possui numerosas aplicações.
Energia de translação e gases ideais
Ver artigo principal: Gás ideal
A energia cinética (newtoniana ou clássica) de uma partícula de massa m e velocidade v é dada pela expressão:
onde vx, vy e vz são as componentes cartesianas da velocidade v. H é o hamiltoniano, e portanto será utilizado como símbolo da energia dado que a mecânica de Hamilton desempenha um papel destacado na forma mais geral do teorema da equipartição.
Como a energia cinética é quadrática nos componentes da velocidade, por equipartição destas três componentes, cada uma contribui com ½kBT para a energia cinética média em equilíbrio térmico. Portanto, a energia cinética da partícula é (3/2)kBT, como no caso do exemplo dos gases nobres discutido previamente.
De forma mais geral, num gás ideal, a energia total consiste exclusivamente de energia cinética de translação: já que se assume que as partículas não possuem graus internos de liberdade e se movem de forma independente umas das outras. A equipartição portanto prediz que a energia total média de um gás ideal com N partículas é (3/2) N kBT.
Portanto, a capacidade térmica de um gás é (3/2) N kB e a capacidade térmica de um mol de partículas de dito gás é (3/2)NAkB=(3/2)R, onde NA é o número de Avogadro e R é a constante universal dos gases perfeitos. Como R ≈ 2 cal/(mol·K), a equipartição prediz que a capacidade térmica molar de um gás ideal é aproximadamente 3 cal/(mol·K). Esta predição foi confirmada experimentalmente.[3]
A energia cinética média também permite calcular a raiz da velocidade quadrática média vrms das partículas de gás, como:
onde M = NAm é a massa de um mol de partículas de gás. Este resultado é muito útil para aplicações tais como a Lei de Graham de efusão, da qual se deriva um método para enriquecer Urânio.[4]
Energia rotacional e agitação molecular em solução
Um exemplo similar é o do caso de uma molécula que roda e cujos momentos de inercia principais são I1, I2 e I3. A energia rotacional de dita molécula é dada por:
onde ω1, ω2, e ω3 são os componentes da velocidade angular. Seguindo um raciocínio similar ao utilizado no caso da translacção, a equipartição implica que, em equilíbrio térmico, a energia média de rotação de cada partícula é (3/2)kBT. De forma similar, o teorema da equipartição permite calcular a velocidade angular média (mais precisamente, a raiz média quadrática) das moléculas.[5]
A rotação das moléculas rígidas — ou seja, as rotações aleatórias de moléculas em solução — joga um papel de destaque nas relaxações observadas por meio de ressonância magnética nuclear, particularmente por ressonância magnética nuclear de proteínas e por acoplamento dipolar residual.[6] A difusão rotacional pode também ser observada mediante outras técnicas biofísicas tais como a anisotropia fluorescente, a birrefringência de fluxo e a espectroscopia dieléctrica.[7]
Energia potencial e osciladores harmónicos
A equipartição aplica-se tanto à energia potencial com à energia cinética. Exemplo importante disto são os osciladores harmónicos tais como as molas, que possuem una energia potencial quadrática:
onde a constante a descreve a rigidez da mola e q é o desvio em relação ao equilíbrio. Se dito sistema unidimensional possui uma massa m, então a sua energia cinética Hkin é ½mv² = p²/2m, com v e p = mv a velocidade e o momento do oscilador, respectivamente. Combinando estes termos obtém-se a energia total[8]:
Deste modo, a equipartição implica que, em equilíbrio térmico, o oscilador possui uma energia média:
onde os colchetes angulares representam a média da quantidade contida entre eles.[9]
Este resultado é válido para todo o tipo de osciladores harmónicos, como por exemplo num pêndulo, numa molécula que vibra ou num oscilador electrónico passivo. Existem numerosos sistemas que contêm este tipo de osciladores; mediante a equipartição, cada um destes osciladores recebe uma energia média total kBT e portanto contribui kB para a capacidade térmica do sistema. Esta última relação pode ser usada para obter a fórmula para o ruído de Johnson–Nyquist ou "ruído térmico"[10] e a Lei de Dulong-Petit para a capacidade térmica molar dos sólidos. Esta última aplicação foi especialmente relevante na história da equipartição.
Capacidade térmica dos sólidos
Uma aplicação importante do teorema da equipartição é o do cálculo da capacidade térmica de um sólido cristalino. Cada átomo neste tipo de sólido pode oscilar em três direcções independentes, pelo que se pode pensar o sólido como sendo um sistema de 3N osciladores harmónicos simples independentes, onde N é o número de átomos na rede. Dado que cada oscilador harmónico possui uma energia média kBT, a energia total média do sólido é 3NkBT, e a sua capacidade térmica é 3NkB.
Tomando o número de Avogadro NA, e utilizando a relação R = NAkB entre a constante dos gases R e a constante de Boltzmann kB, encontra-se uma explicação para a lei de Dulong-Petit relativa às capacidades térmicas molares dos sólidos, que estabelece que a capacidade térmica por mol de átomos na rede é 3R ≈ 6 cal/(mol·K).
No entanto, esta lei não reproduz os dados experimentais a baixas temperaturas, devido à presença de efeitos quânticos; também é inconsistente com a terceira lei da termodinâmica, de acordo com a qual a capacidade térmica molar de qualquer substância deve tender a zero quando a temperatura se aproxima do zero absoluto.[10] Uma teoria mais precisa, que incorpora efeitos quânticos, foi desenvolvida por Albert Einstein (1907) e Peter Debye (1911).[11]
É possível representar outros numerosos sistemas físicos como conjuntos de osciladores acoplados. Os movimentos destes osciladores pode-se decompor em modos normais, similares aos modos de vibração de uma corda de piano ou das ressonâncias de um tubo de órgão. Por outra lado, a equipartição muitas vezes não funciona em ditos sistemas, porque não existe intercâmbio de energia entre os modos normais. Num caso extremo, os modos são independentes e portanto as suas energias se conservam de forma independente. Isto mostra que algum tipo de mistura de energias, chamada ergodicidade, é importante para que seja válida a lei da equipartição.
Sedimentação de partículas
A energia potencial nem sempre possui uma dependência quadrática em relação à posição. No entanto, o teorema da equipartição também demonstra que se um grau de liberdade x contribui somente em uma fracção xs (para um número real fixo s) para a energia, então a energia média em equilíbrio térmico dessa parte é kBT/s.
Esta extensão possui uma aplicação no estudo de sedimentação de partículas sob acção da força de gravidade.[12] Por exemplo, o enevoado que por vezes é observado na cerveja pode ser causada por aglutinações de proteínas que dispersam a luz.[13] Como decorrer do tempo, estas aglutinações deslocam-se para baixo por efeito da força da gravidade, produzindo um aumento do enevoamento próximo da zona inferior do recipiente comparado com a zona superior. No entanto, mediante um processo que opera em direcção contrária, as partículas também difundem em sentido ascendente, em direcção à parte superior do recipiente. Uma vez alcançado o equilíbrio, o teorema da equipartição pode ser utilizado para determinar a posição média de una aglutinação particular de massa flutuante mb. Para o caso de uma garrafa de cerveja de altura infinita, a energia potencial gravitacional é:
onde z é a altura da aglutinação de proteínas na garrafa e g é a aceleração da gravidade. Dado que s=1, a energia potencial média de um aglutinação de proteínas é kBT. Portanto, uma aglutinação de proteínas com uma massa flutuante de 10 MDa (aproximadamente do tamanho de um vírus) produziria um enevoamento com uma altura média de aproximadamente 2 cm, em equilíbrio. O processo de sedimentação até se estabelecer um equilíbrio é descrito pela equação de Mason-Weaver.[14]
História
- Este artigo utiliza a unidade cal/(mol·K) para o calor específico molar em lugar da do sistema SI, porque permite obter maior precisão em magnitudes de um só dígito.
Para uma conversão aproximada à correspondente unidade SI de J/(mol·K), tais valores devem ser multiplicados por 4,2 J/cal.
- Este artigo utiliza a unidade cal/(mol·K) para o calor específico molar em lugar da do sistema SI, porque permite obter maior precisão em magnitudes de um só dígito.
A equipartição da energia cinética foi proposta inicialmente em 1843, e de forma mais acabada em 1845, por John James Waterston. [15] Em 1859, James Clerk Maxwell postula que a energia cinética calórica de um gás era dividida em partes iguais entre a energia linear e rotacional.[16] Em 1876, Ludwig Boltzmann expandiu o seu princípio demonstrando que a energia média era repartida em partes iguais entre todas as componentes independentes de movimento de um sistema.[17][18] Boltzmann aplicou o teorema da equipartição para desenvolver uma explicação teórica da lei de Dulong–Petit sobre a capacidade calorífica específica dos sólidos.
A história do teorema da equipartição está entrelaçada com a da capacidade calorífica molar, ambas foram estudadas durante e século XIX. Em 1819, os franceses Pierre Louis Dulong e Alexis Thérèse Petit descobrem que os calores específicos molares dos sólidos a temperatura ambiente eram quase idênticos, uns 6 cal/(mol·K).[20] Esta lei foi utilizada por muitos anos como a técnica para medir massa atómica.[11] No entanto, estudos posteriores por James Dewar e Heinrich Friedrich Weber mostraram que a lei de Dulong-Petit só é válida a altas temperaturas;[21] a baixas temperaturas, ou para sólidos excepcionalmente duros tais como o diamante, o calor específico era menor.[22]
Medições experimentais do calor específico dos gases também despertaram dúvidas com respeito à validade do teorema da equipartição. O teorema prediz que a capacidade calorífica molar de gases monoatómicos simples deveria ser de uns 3 cal/(mol·K), enquanto que a de gases diatómicos deveria ser de uns 7 cal/(mol·K).
Esta predição foi confirmada mediante experiências,[3] mas encontrou-se que as capacidades caloríficas molares de gases diatómicos possuem valores próximos a 5 cal/(mol·K),[23] que desce a uns 3 cal/(mol·K) a muito baixas temperaturas.[24] Maxwell observou, em 1875, que a discrepância entre as experiências e o teorema da equipartição era ainda pior que o que sugerem estes valores;[25] dado que os átomos são formados por partículas, seria de esperar que a energia calórica contribui também para aumentar o movimento destas partes internas, fazendo que os calores específicos preditos para gases monoatómicos e diatómicos fossem maiores que 3 cal/(mol·K) e 7 cal/(mol·K), respectivamente.
Uma terceira discrepância é o valor do calor específico dos metais.[26] De acordo com o modelo clássico de Drude, os electrões metálicos comportam-se de forma similar a um gás quase ideal, e portanto deveriam contribuir com (3/2) Ne kB para a capacidade calorífica segundo o teorema de equipartição, onde Ne é o número de electrões. No entanto, comprovou-se experimentalmente que os electrões contribuem em muito pequena medida para a capacidade calorífica: as capacidades caloríficas de muitos materiais condutores e isolantes são praticamente iguais.[26]
Propuseram-se várias explicações para a falha do teorema da equipartição em reproduzir as capacidades caloríficas molares. Boltzmann defendia o seu teorema da equipartição já que considerava que a sua dedução era correcta, mas era da opinião que talvez os gases não se encontrassem em equilíbrio térmico por causa da sua interacção com o éter.[27] Lord Kelvin sugeriu que a derivação do teorema da equipartição deviam estar incorrectos, uma vez que discordavam com as experiências, mas não soube explicar a causa.[28] Lord Rayleigh, por sua vez, lançou a ideia que o teorema da equipartição e a suposição experimental sobre o equilíbrio térmico eram ambas correctas; para resolver o problema, ele postulou a necessidade de contar com um princípio novo que providenciaria uma "saída da simplicidade destrutiva" do teorema da equipartição.[29] Albert Einstein encontrou dita solução, ao mostrar, em 1907, que estas anomalias no calor específico se deviam a efeitos quânticos, especificamente a quantização de la energia nos modos elásticos do sólido.[30] Einstein utilizou a falha do teorema da equipartição para argumentar sobre a necessidade de contar com uma nova teoria quântica da matéria.[11] As medições experimentais realizadas por Nernst, em 1910, sobre calores específicos a baixas temperaturas[31] serviram de respaldo para a teoria de Einstein, tendo levado à aceitação ampla da teoria quântica entre os físicos.[32]
Formulação geral do teorema da equipartição
Ver artigo principal: Coordenadas generalizadas, Mecânica hamiltoniana, Conjunto microcanónico e Conjunto canónico
A forma mais geral do teorema da equipartição[5][9][12] estabelece que sob suposições adequadas (ver parágrafos subsequentes), um sistema físico com uma função de energia hamiltoniana H e graus de liberdade xn, satisfaz a seguinte fórmula de equipartição em equilíbrio térmico para todos os índices m e n:
/ G ψ = E ψ = Eψ ω Mom= [/ ] / / = ħω [Ϡ ] [ξ ] [,ς] ψ μ / h/c ψ(x, t) x t ].. [
O teorema geral da equipartição vale tanto para o conjunto microcanónico,[9] quando a energia total do sistema é constante, como também para o conjunto canónico,[5][33] quando o sistema está acoplado a um banho térmico com o qual se dá intercâmbio de energia. A expressão para a fórmula geral é apresentada em secções posteriores deste artigo.
A fórmula geral é equivalente às seguintes expressões:
- G ψ = E ψ = Eψ ω Mom= [/ ] / / = ħω [Ϡ ] [ξ ] [,ς] ψ μ / h/c ψ(x, t) x t ]..para todo o n. [
- G ψ = E ψ = Eψ ω Mom= [/ ] / / = ħω [Ϡ ] [ξ ] [,ς] ψ μ / h/c ψ(x, t) x t ].. para todo o m≠n. [
Se um grau de liberdade xn aparece somente como um termo quadrático anxn² num hamiltoniano H, então a primeira fórmula implica que:
que é o dobro da contribuição que este grau de liberdade aporta para energia média . Portanto, o teorema da equipartição para sistemas com energias quadráticas é facilmente dedutível a partir da fórmula geral. Um argumento similar aplica-se às energias de forma anxns, onde o 2 é substituído por s.
Os graus de liberdade xn são coordenadas no espaço de fase do sistema e portanto comummente subdivididas em coordenadas de posição generalizadas qk e coordenadas de momento generalizadas pk, onde pk é o momento conjugado para qk. Neste caso, a fórmula 1 significa que para todo o k,
Utilizando as equações da mecânica hamiltoniana,[8] resultam as seguintes fórmulas:
A fórmula 2 estabelece adicionalmente que as médias
G ψ = E ψ = Eψ ω Mom= [/ ] / / = ħω [Ϡ ] [ξ ] [,ς] ψ μ / h/c ψ(x, t) x t ]..são todas zero para j≠k. [
Relação com o teorema do virial
O teorema geral da equipartição é uma extensão do teorema do virial (proposto em 1870[34]), que estabelece que:
G ψ = E ψ = Eψ ω Mom= [/ ] / / = ħω [Ϡ ] [ξ ] [,ς] ψ μ / h/c ψ(x, t) x t ]..onde t é o [tempo.[8] Duas diferenças importantes são que o teorema do virial relaciona média somadas em lugar de médias individuais, entre si, e não as associa com a temperatura T. Outra diferença é que nas derivações tradicionais do teorema do virial utilizam-se médias sobre o tempo, enquanto que aquelas baseadas no teorema da equipartição usam médias sobre o espaço de fase.
Onde δmn é o delta de Kronecker, que toma o valor unitário se m=n e o valor nulo em todos os outros casos. Os parêntesis podem-se referir tanto à média de período prolongado de tempo de um sistema, ou mais comummente, à média do conjunto no espaço de fases. As suposições de ergodicidade que estão implícitas no teorema implicam que estes dois tipos de média coincidem, e portanto, ambos têm sido utilizados para calcular as energias internas de sistemas físicos complexos.
Comentários
Postar um comentário